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Rough-wall boundary layers in adverse 
pressure gradients 

By A. E. PERRY AND P. N. JOUBERT 
Department of Mechanical Engineering, University of Melbourne 

(Received 1 January 1963 and in revised form 22 April 1963) 

Smooth- and rough-wall boundary layers and fully developed pipe and duct 
flow investigations are reviewed. It is shown that the effect of roughness on the 
flow away from the wall can be accounted for by using an equivalent viscosity 
lie. This viscosity is thought to depend only on the variables at  the wall, such as 
shear stress T,,, fluid density p, viscosity ,u and the roughness size and geometry 
and that the relationship between these variables is the same for both boundary 
layers and duct flow. However, experiments to date have been confined to the 
‘rough regime ’ and to boundary layers with a zero pressure gradient. 

Experiments were performed and the results show that the above finding can 
be extended to boundary layers with adverse pressure gradients in the rough 
r6gime. 

A general method for measuring the local boundary-layer characteristics, 
with roughness and pressure gradients present, is developed: 

1. Introduction 
The effect of roughness on the development of turbulent boundary layers and 

the correlation of the results with the roughness effects in turbulent pipe flow 
is not only a subject of fundamental importance in fluid mechanics, but is also 
of importance in practical fields such as naval architecture and aeronautics. 
The correlation enables the more easily obtainable data of pipe flow to be applied 
to the outside surfaces of bodies having a similar roughness geometry as on the 
pipe surface. However, unlike smooth-wall flow investigations, the number of 
different conditions under which rough-wall flow have been examined to date 
is limited. As a result, smooth-wall data have often been used as a guide to predict 
how rough-wall flow might behave under the same conditions. 

Many methods of calculation and analysis of the turbulent shear flow of a 
fluid near a wall hinge on the supposed existence of a logarithmic distribution of 
mean velocity U over some range of y from the wall. The fact that such a dis- 
tribution exists has been verified by a large amount of experimental data for a 
variety of flow conditions and many models for the turbulence mechanism have 
been put forward to yield such a mathematical solution. However, the log- 
arithmic profile can be arrived at  by dimensional reasoning based on some simple 
experimental facts. 

For fully developed flow in a uniform pipe of radius 6 and with fluid velocity 
C< at the axis, a similarity defect law (U, - U)/U,  = F(y/S) is found to exist except 
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in a thin layer adjoining the wall (U, = ( ~ , , / p ) *  where T,, is the wall shear stress 
and p the fluid density). A law of this form is also found to apply in zero-pressure- 
gradient boundary layers (where in this case 6 is the boundary-layer thickness 
and U, is the free-stream velocity), although it is difficult to find a theoretical 
reason why such a law should hold exactly (see, for example, Rotta 1962). 

Close to the wall in both boundary layers and pipes Prandtl’s law of the wall 
is found to apply, i.e. U/U, = f(yU,/v) even in the region of y where the defect 
law is applicable. Millikan (1939) pointed out that in the region of simultaneous 
validity of these two laws, the form of the function f(yU,/v) is mathematically 
restricted and is given by 

u 1 YU, 
- = -In-++, u, K 1’ 

where K and A are universal constants. 
With pressure gradients imposed on a boundary layer, a similarity defect law 

does not exist although the law of the wall may still be applicable, as the experi- 
mental results of Ludwig & Tillman (1949) and the work of Clauser (1954,1956) 
show. However, the defect law in pipes may be interpreted to mean that for a 
given ‘shear velocity’ U,, the effect of viscosity on the shape of the mean-flow 
profile is confined only to a thin layer adjoining the wall and this should also be 
true in boundary layers with and without pressure gradients. This information, 
when used in conjunction with the law of the wall, shows that a logarithmic 
profile should also occur in boundary layers without having to rely on a similarity 
defect law for the mathematical argument. This is shown by a modified form of 
Millikan’s argument given by Rotta (1962). 

From the law of the wall, the velocity gradient is given by 

and since this cannot depend on v above the viscous sublayer, then 

where again K is a universal constant. Integration then leads to equation (1) .  
This equation is found to apply for approximately 15 yo of the boundary-layer 
thickness. There appears to be a slight difference between the respective values 
of K and A for the two situations of pipes and boundary layers quoted by various 
authors. However, in view of the scatter in results this possible difference is 
usually ignored. 

One of the many significant results found by Nikuradse (1933) from his experi- 
ments on flow in pipes with sand-grain roughness was that the ‘smooth wall’ 
velocity defect law was still applicable irrespective of the size of the roughness. 
The effect of roughness on the velocity profile shape therefore is, like viscosity, 
confined to a thin region adjoining the surface and as far as the flow beyond this 
zone is concerned, roughness effects can be accounted for by using a modified 
coefficient of viscosity v,. 



Rough-wall boundary layers in adverse pressure gradients 195 

There will still exist a region where outside flow conditions given by 6 and U, 
have no influence and, using the same arguments as used to arrive at equation (2) 
(with v replaced by ve),  a more general logarithmic law of the wall is obtained, 

1 YU, namely 
= -In-++, 

U, K Ve 
(3) 

Here K is the same as for smooth surfaces a.nd so also is the constant A by 
definition of l ie.  

2. Variables involved in rough-wall flow 
Nikuradse’s pipe data shows that ve depends only on the surface variables, 

which, for a given roughness geometry, are U,, v and k where k is any length vari- 
able associated with the roughness size. Dimensional reasoning then leads to 

and so equation (3) may be written in two other forms, these being 
l)e/v = f i (kUr lV)  (4) 

or 

Equation ( 5 )  is the form adopted by Nikuradse while equation (6) was the 
form used by Clauser (1954, 1956) and Hama (1954). When plotted on the basis 
of U/U, versus log(yU,/v), equation (6) is represented by a family of straight 
parallel lines each being displaced downwards from the smooth wall profile by 
an amount AU/U,.  

For low values of kU,/v, v, is equal to v, that is, roughness has no effect (the 
smooth rhgime). However, for high values of kU,/v, viscosity plays no part (the 
rough rkgime) and equation (4) then gives 

ve = akU, or ve = keU,, 

where a is a constant dependent on the roughness geometry. The parameter 
ke may be regarded as an effective roughness scale. Equation (3) becomes 

and this is equivalent to equation (5) if B is a constant. The roughness function 

(8) 
AUIU, is given by AU 1 keU, 

__ = -In---++. 
U, K V 

It is suggested here that the parameter ke is less arbitrary than the Nikuradse 
sand-grain scale which is now in wide-spread use. The parameter k, is formed 
from a comparison with smooth surfaces and this would seem to be a more 
suitable standard. 

For the intermediate values of kU,/v where v has an effect (the transitionrhgime) 
the mathematical form of fi in equation (4) cannot be deduced by dimensional 
reasoning and the form will of course be different for different roughness 
geometries. 

13-0 
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3. Review of rough-wall boundary-layer investigations 
It has been assumed for many years that equations equivalent to (4) would be 

universally valid for both boundary-layer flow and fully developed pipe or channel 
flow for a given roughness geometry. For example, this was used as a basis in 
Schlichting’s (1937) analysis for rough plates with zero pressure gradient or 
Prandtl & Schlichting’s (1934) analysis. However, prior to 1951, little or no 
experimental work of worth had been carried out. 

Moore (1951) obtained a useful set of experimental results for boundary layers 
with zero pressure gradient. His roughness consisted of square rods placed normal 
to the flow, the ratio of the pitch to height being 4; three sizes were used, these 
being &, 8 and 18 in. squares. Unfortunately he attempted to verify the equations 
derived by Prandtl & Schlichting which were based on the distance x from the 
leading edge of the plate. The position of the effective leading edge is ill defined 
owing to lack of knowledge as to what happens where the boundary-layer thick- 
ness is comparable with the size of the roughness elements. Since the logarithmic 
law of the wall is applicable only for a distance of y/S 21 0.15, it is possible that 
the roughness elements protrude into the layer for a distance much greater than 
this near the front of the plate. 

Using expressions for skin friction based on a local length variable such as 6 
is also somewhat inaccurate unless it is defined on an integral basis as, for ex- 
ample, given by Coles (1956). From the similarity defect law and definition of 
the displacement thickness 6*, Rotta (1950) arrived at another length variable 
A, given by 

where N is a constant. Since A is proportional to 6 and defined on an integral 
basis it would be an accurate substitute for 6 in the skin-friction equation. 

From an analysis of his boundary-layer profiles, Moore found that a similarity 
defect law was applicable and was identical with the smooth-wall law provided 
the origin for measuring y and 6 was located some distance below the crest of 
the roughness elements. 

With the more accurately defined variable A, Clauser (1954) arrived at  the 
following law for skin friction with roughness effects included: 

(9) A = S*UJU, = NS, 

AU 
UT 

= ,ln(R,.)--+D, 1 

where R,, = U,S*lv. The variable D depends on the upstream shear and pressure 
distribution and is found to be approximately constant when the pressure 
gradient is zero. It is assumed that AUlU, is not influenced by pressure gradients. 

Clauser re-analysed the data of Moore on the basis of equation (10) and deter- 
mined AUIU, and found it to be an exclusive function of kU,lv. This was com- 
pared with the flume data of Rand who used an identical roughness pattern and 
the same function was found to apply. Hama (1954) further confirmed the ideas 
of Clauser by carrying out zero-pressure-gradient boundary-layer tests with 
wire-screen roughness. The existence of a logarithmic law of the wall and a 
similarity defect law was strongly verified and the resulting AUIU,-variation 
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was compared with the flume data of Sarpkaya (see Hama 1954) and again this 
was found to be an exclusive function of kUJv. 

The experimental data of Moore, Rand, Hama and Sarpkaya is shown in 
figure 1.  It appears from this diagram that equation (4) is universally valid for 
a given roughness geometry since V J V  = exp (KAUlu,). However, the comparison 
between the flume and boundary-layer data was made only in the rough rkgime 
and for zero-pressure-gradient layers. 

FIGURE 1. Roughness functions obtained from boundary layers and flumes. (1)  Wire 
screens; (2) transverse bars. ., Hama, boundary layer; A ,  Sarpkaya, flume; 0 ,  Moore, 
boundary layer; 0, Kand, flume. 

4. A i m s  
The aim of this work is to verify experimentally whether or not the above 

results would also be applicable to boundary layers with imposed arbitrary 
adverse pressure gradients. (Work is also progressing-not reported here-to 
establish laws for the above flow conditions for those roughness geometries 
which show a behaviour independent of roughness scale such as the ‘groove’- 
and ‘depression’-type roughness of Streeter & Chu 1949, Sams 1952 and 
Ambrose 1956.) 

A further aim follows from difficulties associated with data reduction in this 
type of work. One reason why research on rough plates with pressure gradients 
has been avoided is that the various experimental techniques used for finding the 
local shear stress for smooth surfaces, such as the use of the Stanton or Preston 
tube or hot elements, cannot be applied unless the laws of roughness behaviour 
are known. Also momentum-integral methods with graphical differentiation are 
highly inaccurate, especially when pressure gradients are imposed. Pressure- 
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tapped roughness elements or floating-element techniques could be employed. 
However, the form of the roughness elements are restricted by this and so these 
methods are not always convenient. A more universal method of data reduction 
was thought to be of greater use. 

5. Description of apparatus 
5,l. Wind tunnel 

The Melbourne University wind tunnel was used for the tests, it  being of the 
closed circuit type with a contraction and diffusing working section of octagonal 
form. The contraction measured 5 ft. 6 in. wide by aft. 3 in. high at  its downstream 
end. A closed working section 17 ft. long was installed which matched the con- 
traction and expanded along its length to a basic cross-section 6 ft. 14 in. wide 
by 5 ft.  3 in. high. A turbulence screen was erected in the settling section of the 

4 h = 0.50 in. * 0.02 h 

$ ? f j h = 0.125 in. 4 0.005 Alh = 4 

Tape 0.004 f 0.001 in. 
FIGURE 2. Roughness geometry tested. 

tunnel which reduced the turbulence level from 1.0 to 0.56 % as measured by a 
6 in. diameter turbulence sphere when the tunnel was empty and corresponded 
to 90ft./sec. at the contraction exit. This was of some importance since Coles’s 
wake function is sensitive to turbulence level when it is above approximately 
0.5 % and the data reduction depended on an accurate wake. 

5.2. Plate 
The plate was made to fit horizontally across the tunnel and its width varied to 
suit the working section. It was provided with slotted brackets to allow for 
adjustment for the various desired pressure gradients. Felt seals were fitted 
between the plate edges and tunnel walls. 

One panel of the plate extended 3ft. into the contraction and a tailpiece 
extended 4 ft. into the diffuser and this gave a total length of plate equal to 24 ft. 
However, it  was found necessary to traverse only 17 ft. of plate. A special nose- 
piece was fitted to the leading edge to allow for smooth entry of the flow when 
the plate was tilted for adverse pressure gradients. 

5.3. Roughness elements 
In  order to correlate resistance and roughness-function measurements with 
pressure gradients imposed with those of other workers who used zero pressure 
gradients, the same roughness as used by Moore was chosen. The roughness 
geometry is shown in figure 2. A typical velocity profile will be referred to here 
as I13 say. The Roman numeral refers to the pressure gradient imposed and 
the arabic number refers to the traverse number in the series. 
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The roughness consisted of 800 strips of timber which were accurately machined 
to size and were 5ft. 3in. in length. These were held to the plate by strips of 
double-coated adhesive tape. 

Since a t  the downstream end, the roughness did not span the full width of 
the tunnel, it was felt that this may have introduced additional three-dimen- 
sional effects. However, it did not appear to affect the results. 

6. Experimental procedure 
All velocity traverses were carried out normal to the plate and along the 

tunnel centre-line. The distance yT measured from the top of the elements to the 
centre-line of the probe had its origin located by means of an electrical contact 
method and could be reproduced within the limits of +. 0.001 in. and the value 
Of YT could be measuredand controlled to this accuracy. 

6 

5 
NZ 4 

5- 3 
I 

m z  2 
b 

1 

2 

v 

x (ft.) 

FIGURE 3. Pressure distributions I1 end 111. 

B 

It was not clear at  first to which position relative to an element the velocity 
profile should be measured. This position, however, was found to make no differ- 
ence to the resulting profile. All pressure coefficients were based on the velocity 
U,, which was measured in the free stream 2 ft. 6 in. from the leading edge of the 
plate. The static pressure variation through the profile was also noted and was 
found to be negligible in all cases even for the profiles which were 13in. thick. 
Hence the usual boundary-layer approximation could be used if found to be 
necessary. 

The pressure distributions used (I1 and 111) are shown in figure 3 and were 
obtained from velocity measurements. 

7. Analysis of data reduction methods 
7. I. Basic principles of local profile ’ method 

A graphical method was developed for determining the local boundary-layer 
characteristics from each measured velocity distribution and this method is an 
extension of a method introduced by Clauser (1954) which is suitable for smooth 
surfaces with and without pressure gradients. 
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Using the usual law of the wall 

a multiplication of both sides by U,/U, ( =  +c;)g leads to the form 

where here the numerical values K = 0.41 and A = 4.9 are being used. These 
are the average values arrived at  by Clauser from various sources. 

It can be seen from the above equation that on a U/V, versus logl0(yU,/v) 
plot, a family of straight lines is produced, each line corresponding to a given 
value of c;. Thus a chart may be constructed, and by plotting the experimental 
points on such a chart, the line upon which they fall gives the appropriate value 
of c;. The accuracy of the result is confirmed by two properties of the line, these 
being its slope and its placement on the chart. 

It will be assumed for the moment that this method can be extended to rough 
surfaces. Here difficulties arise, these being that the origin for y is not known 
and also, since the roughness causes a shift in the logarithmic profile, the value 
of c; is confirmed only by the slope of the logarithmic line and not its position. 

For the velocity U ,  let yT be the distance above the crests of the elements and y 
be the distance from the logarithmic asymptote, this being located a distance E 

below the crests. It will be further assumed that Coles's wake hypothesis is 
applicable (Coles 1956) so that the whole profile is described by 

where w is a supposed universal function of y/6 and n is a parameter dependent 
on the upstream shear stress and pressure distribution. 

From this it can be shown that 

This can be put into the more experimentally convenient form using Clauser's 
numerical values 

where here yT and e are measured in inches if P is given by 

From this AU/UT is given by 

Also 
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Equation (12) is shown dotted in figure 4 and represents the experimental 
points that would be actually plotted during a traverse, it  being a plot of UlU, 
versus logl,y, (in.). Once the error E is known, an addition of it to each pT 
value would give the curve shown full in the  figure. For low values of w ( y / S )  this 
curve follows the asymptote XX for some considerable distance on the semi- 
logarithmic plot. 

7 
Free-stream leve 

U/U,  versus log,, yT in. 
U/U, versus log,, y in. 

log,, 8, in. 

FIGURE 4. Graphical method for determining boundary-layer 
and roughness variables and functions. 

From equation (12) the slope of XX gives the value of 5.6(&;)* while the 
vertical intercept gives P. From this 

hU, ( = hUl J) c; 

can be calculated and knowing P a simple calculation using equation (14) gives 
the value of AU/U,. Here h is the height of the roughness element. 

The boundary-layer thickness d may be found rapidly and with reasonable 
accuracy by using the properties of the wake function w(y/S). Coles defined S on 
an integral basis 

1’ 

but also pointed out that if the wake function is to be universal, 6 must also 
correspond to the value of y at which the maximum deviation from the log- 
arithmic profile occurs. From equation (12) it  can be seen that this maximum 
deviation will equal H,, (since w (  1) = 2) and from equation (15) II can be found. 
The point of maximum deviation is difficult to find since it occurs at a point of 
tangency. However, since the wake is nearly antisymmetrical, a line drawn 
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parallel to the asymptote XX and at half the maximum deviation away (a con- 
struction suggested by Coles) will cut the profile at half the boundary-layer 
thickness. Hence it can be seen from figure 4 that adding log,, 2 to the value of 
log,, y at which this intersection occurs will give the boundary-layer thickness. 

2 

0 

P I  
2- 

. 
Y I& 

FIGWRE 5 .  Relationship between Coles's thickness 8, and 6. 

Unfortunately the wake function is not truly universal at  the outer edge of 
the layer since it asymptotes to a line of slope - l/II instead of zero, as shown in 
figure 5.  This can be shown from equation (1  1) together with the condition that 
(aU/ay),_, = 0. Figure 5 also shows that the point of maximum deviation does 
not correspond to the true boundary-layer thickness S but to a thickness which 
will be referred to as S,. When based on this, Coles's wake function becomes 
nearly universal. As I1 becomes large S, will approach S and for small lI it  will 
be hoped (for the moment) that the discrepancy is not very large. 

With some saving of effort, the above analysis could have been based on the 
roughness function B. However, to keep it in line with the analysis of Clauser 
and Hama AUlU, was adopted. 

7.2 .  Approximate method for locating the origin of y 

For an accurate determination of c; and other parameters, an accurate estimate 
of E is required and this proved to be one of the most difficult tasks in the present 
project. An error in origin for y distorts the logarithmic profile into a, curve on 
the semi-logarithmic plot. 

It can be shown that for a given slope of logarithmic line, a positive value of E 

produces a curve with a horizontal asymptote which intersects the logarithmic 
line at In y = In E and the shape of the curve is indepenent of E (see figure 6). 
For negative values of B, the asymptote is vertical and such curves are also shown. 
A chart based on this principle was constructed and enabled c; and E to be deter- 
mined, but it proved to be extremely insensitive since many combinations of € 

and c; gave equally good fits to the experimental points. 
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After much experimenting, the writers found that the following method, 
although not giving the precise value of E, locates the narrowest range within 
which it occurs. Adding an error, which is larger than say twice the expected 

, , 
Positive t: 

Negative E 

U /U ,  versus In yT 

point UlU, versus In y - 
1y = In (-€) 

Y!r InY 

FIGURE 6. Figure showing curves of constant error, e.  

f 

Experimental points 

Experimental points 
0 

0 

0.02 0.04 0.06 0.08 0.1 0.3 0 5  0 7  0.9 
0.03 0.05 0.07 0.09 0.2 0.4 0.6 0-8 1.0 

yT1 yin. 

FIGURE 7. Graphical method for finding range of likely 6 values. 

value in the experimental plot, gives curves which have the trend corresponding 
to negative values of 8 shown in figure 6. This brings the experimental points 
close together, making it very easy to ‘eye-in’ a monotonic curve of best fit. 
Points near the surface which may be off the logarithmic line show up clearly 
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and can be ignored whiIe the region where the wake deviates shows up as a 
sharp inflexion. (This is not so for small values of II .) 

Using this faired-in curve, errors are then subtracted, giving a family of 
straight or nearly straight lines in the region of the true value of E. (If actual 
experimental points are used instead of the faired-in curve, a conglomeration 
of scattered points is produced in this region.) A typical construction is shown 
in figure 7 from an actual experimental profile. 

The wake component should deviate at y/S equal to 0.1 to 0.15. This acts as 
a useful guide for finding the region of the profile which is logarithmic. 

---T-- Free-stream level 

Assumed equal to 1 

~ 7 -~ 

l0gIlJ YT, Y 
FIGURE 8. Wake alignment method for finding E (II large). 

7.3. ' Wake  alignment ' method for Jinding E precisely 

When II is large, it  was seen in 9 7.1 that 8, approaches S and if the wake hypo- 
thesis is accepted, the correct value of E may be found by extending the line tan- 
gent at  the point of maximum deviation up to the free-steam level cutting this 
at a well-defined point as shown in figure 8. The distance between this point and 
the intersection at  half the maximum deviation should approach log,, 2 on the 
horizontal scale. By doing this for a few likely values of E ,  an interpolation 
scheme can be used to give a fairly precise and consistent value of E and hence c;. 

7.4. Checking of local projile method 
The above method relies on the existence of a logarithmic law and this is one of 
the facts to be proved. Also the value of K used may not be applicable to rough 
surfaces, that is, roughness may affect the flow for some considerable distance 
from the wall. Hence an independent check is required for completeness. 

The momentum integral equation may be written in the form 

where B is the momentum thickness and H = a*/#. This equation is then in- 
tegrated thus avoiding graphical differentiation, 
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By integrating from the back of the plate, say at  x = x,, to a general value of 
x the difference being Ax, the right-hand side of equation (17) was plotted against 
Ax from measurements of the profile and the x-wise velocity distribution. The 
left-hand side was determined from the results of the wake-alignment method 
and plotted against Ax for comparison. This acted as a fairly accurate check 
(see $9.1).  

8. Discussion of data reduction 
The wake-alignment method was used, and although the writers do not 

recommend this for values of II less than unity, only the leading-edge profiles 
I1 1* and I1 2 showed any appreciable discrepancy with the resulting trend. 

FIGURE 9. Roughness function. 

Profile I1 6 gave a contradictory result in the value of E predicted by the log- 
arithmic law and wake but this was found to be due to an ill-defined free-stream 
level. The free-stream velocity was not uniform at this section and so trial-and- 
error methods were used to give a symmetrical wake. 

Profile I11 1 failed to yield a solution since there was insufficient length of 
logarithmic region to confirm a definite slope. 

9. Discussion of results 
Figure 9 shows the resulting distribution of AUlU, versus log,, (hU,/v) and also 

shown are the results obtained by Rand (flume) and Moore (flat plate with zero 
pressure gradient) (see 3 3). All pertinent data is shown in table 1. These latter 
results were scaled from a smaller diagram given by Hama (1954) and so the 
exact distribution is not guaranteed, although the amount of experimental 
scatter has been reproduced fairly closely The results obtained here appear to 
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agree fairly well for both pressure distributions and the accuracy of the method 
employed compares well with the more easily obtainable consistency from a 
flume or zero-pressure-gradient layer. The line drawn in this figure is the average 
of the Moore-Clauser and Rand results and its equation is given fairly closely by 

AU/U, = 5.610gIo (hU,/v) - 0.2. (18) 

20 0 %- 

yU,/v, (log scale) 

deduced from mean line of Moore-Rand results (see text). 
FIGURE 10. Experimental velocity profiles, I1 series. - - - - , Equation (3) 

The measured velocity profiles were compared with the universal law of the 
wall U/U, = f(yU,/v,) as obtained from equation (18) and are shown in figures 
10 and 11. All profiles have been displaced horizontally from each other to avoid 
confusion with the experimental points. It can be seen from these figures that 
the agreement is good and that the size of the wake has no influence on the log- 
arithmic law of the wall. The figures also give an idea of the range of logarithmic 
profiles measured. (Every second point has been omitted below y- e = 0-06in.). 

The wake components are compared with Coles’s tentative wake function in 
figure 12, only the best and the worst results being shown. 

9.1. Checking of method 

Figure 13 shows for the I11 series the skin-friction coefficient ci as obtained by 
the wake-alignment method and the momentum-integral method using graphical 
differentiation. It can be seen that the results are considerably scattered. How- 
ever, a comparison of the integrated momentum-integral equation with the 
integrated wake-alignment ci-distribution (as outlined in 5 7.4) is shown in 
figure 14. These quantities were found by integrating upstream from the last 
downstream profile so that any errors made near the leading edge would not 
show up right through the calculation as an ‘integration constant’. The agree- 
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ment shown in these figures is fair, the I11 series being more accurate because of 
the larger II values. A plot of the II values is shown in figure 15 for the two 
pressure distributions. 

I I  

20 

18 

16 

14 

12 

10 

8 

6 

loo loo loo I W  I W  

yU,/v, (log scale) 

deduced from mean line of Moore-Rand results (see text). 
FIGURE 11. Experimental velocity profiles, I11 series. ---- , Equation (3) 

Profile no. 
0116 
0 I12 
V I11 6 

I I I I 

0 2  0.3 0 4  0.5 0.6 0 7  0.8 0 9  : 3 

O2 

log Y P  
FIGURE 12. Comparison with Coles’s wake function. 
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Profile U,  X 

no. 

11 lt  
2 
3 
4 
5 
6 

I11 1 
2 
3 
4 
5 
6 

(ft./sec.) (ft.) P 5.6(&;)* 11, (in.) (in.) 
119 3 0.784 0.49 0.126 1.53 0.085 
119 3 0.706 0.22 0.182 1-86 0.100 
113 5 0.662 0.36 0.18 2.72 0.080 
109 7 0.60 0.33 0.20 4.0 0.100 
104 9 0.555 0.303 0.23 5.15 0.100 
99.4 12 0.506 0.280 0.253 6.6 0.100 

118 3 -  - - 
110 5 0.653 0.351 0.18 2.56 0.080 
105 7 0.570 0.308 0.228 4-35 0.115 
100 9 0.523 0.299 0.252 5-7 0.120 
92.6 12 0.462 0.229 0.305 8 0.100 
83.6 17 0.407 0.259 0.34 12.6 0.100 

1 ft. 6 in. of plate unroughened at  leading edge. 

- __ 

TABLE 1. Experimental data. 

6.95 
5.94 
4.84 
4.26 
3.77 
3.21 
- 

4.62 
3.86 
3-55 
2.86 
2.29 

16.9 
16.1 
14.74 
14.56 
14.11 
13.5 
- 

14.46 
14.11 
14-46 
13.66 
13.34 

0 1 2 3 4 5 

(4.; )w x 103 

FIGURE 13. Comparison of methods, I11 series. 
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I, x 10-2 

FIGURE 14. Checking of wake alignment method. 

as obtained from wake alignment results. 0 Pressure distribution 11; A, pressure 
distribution 111. 

x, distance in ft. from leading edge + 

FIGURE 15. Coles's wake factor, IT, for I1 and I11 series. 
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9.2. Error in origin 

Table 1 shows that the error in origin E was fairly constant, it  being approxi- 
mately O*lin. on the average. The total thickness of the measuring probe was 
approximately 0.030 in., this causing a small displacement in the effective dis- 
tance from the wall. However, the correction to be made for this is negligible 
compared with the size of the roughness elements and the value of E corresponds 
to 0.8 of the roughness height, this being only slightly different from the results 
of Moore. He estimated this value to be approximately 0-7. 

9.3. Value of viscosity adopted 
The results for these tests were not tempexature corrected for viscosity v since 
all flow was in the rough regime and v entered only as a matter of definition for 
AUIU,. A variation in v merely shifts the points given in figure 11, parallel to the 
mean line. The value of viscosity adopted was 17 = 1.56 x 10-4ft.2/sec. 

9.4. Range of variation of parameters 
The results shown in figure 9 cover about three-quarters of a decade and this 
compares well with the range obtained by Moore who covered two decades (see 
figure 1). However, Moore used three sizes of roughness and a fairly large speed 
variation (30 to 80ft./sec.), while here only one tunnel speed and one roughness 
size was used. This shows an advantage in using adverse pressure gradients. It 
is possible to control the speed of the tunnel so that the results would extend 
down another $ of a decade and perhaps reach into the transition r6gime. 
However, it  is likely that hot-wire traverses would then be needed. The actual 
range over which the mean line shown in figure 9 was verified is indicated by the 
arrow heads. This was done by making two cursory traverses near the trailing 
edge of the plate a t  two different tunnel velocities (60ft./sec. and 122ft./sec. 
at the nozzle; x = 17ft.; pressure distribution 11). By noting on a UlU, versus 
log,,y, plot a near identity of the two profiles it was concluded that viscosity 
did not enter the problem to any significant extent and so the flow was rough 
in this range. These two cursory traverses were normalized so that they could 
be plotted in figure 10 ( E  was assumed to be 0.1 in. and a knowledge of U, was not 
necessary although it was known approximately). 

10. Conclusions and recommendations 
(i) The method employed for determining the various boundary-layer 

characteristics with roughness and pressure gradient effects included met with 
success when the parameter JJ was large. For values of II much less than unity 
(leading edge profiles), the method met only with moderate success. 

(ii) For rough-r6gime flow, the roughness function was found to be indepen- 
dent of the pressure gradients imposed. Experiments should now be carried out 
with pressure gradients of sufficient strength to influence the logarithmic profile. 
However, pressure-tapped roughness elements will probably be required since 
the methods of data reduction used here depend on the existence of a reasonably 
large logarithmic region. 
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